Lawrence Livermore National Laboratory

Nuclear Accident Dosimetry Exercises at CEA-Valduc

Andrew Wysong

Presented at the Nuclear Criticality Safety Program Technical Conference at Oak Ridge National Laboratory, March 1, 2011

Outline

Topics

- 2009 SILENE Nuclear Accident Dosimetry Exercise
 - Preparation for Exercise
 - Exercise Setup Overview
 - Exercise Results
 - Lessons Learned
- 2010 CALIBAN Nuclear Accident Dosimetry Excerise
 - Preparation for Exercise
 - Exercise Setup Overview
 - Preliminary Results
- Future Work

2009 NAD Exercise Overview

Participating Laboratories

Lawrence Livermore National Laboratory

2009 NAD Systems

LLNL

INDIUM FOIL
(BARE)
(0.25 g)

INDIUM FOIL
(CADMIUM-COVERED)
(0.21 g)

COPPER FOIL
(CADMIUM-COVERED)
(0.25 g)

SULFUR TABLET
(0.41 g)

LANL

SRS

Lawrence Livermore National Laboratory

Note: Y-12 System Not Pictured

SILENE Reactor

SILENE Reactor

- Uranyl-nitrate solution reactor
- Operates in three modes: pulse, free evolution, steady state
- Pulse mode initiated by rapid withdrawal of control rod
- Reaction stops due to bubbling of liquid and then liquid is quickly evacuated from reactor core

Operated bare and with a lead shield

Lawrence Livermore National Laboratory

Exercise Setup

- Three Pulses
 - Pulse 1 Lead Shield
 - Pulse 2 No Shield, High Yield
 - Pulse 3 No Shield, Low Yield
- Phantom Arrangement
 - Setup at 2 m, 4 m, and 6 m distances
 - Bibs contained dosimeters on front, side, or rear of phantom

Lawrence Livermore National Laboratory

Exercise Results - Neutron

US Laboratory Exercise Results

Neutron Dose (Rad)

Pulse	Shield	Distance (m)	Valduc	LLNL	Y-12	LANL	PNNL	SRS
	Lead	2	690	791	800	650	634	546
1		4	190	232	290	270	NR	NR
		6	110	109	160	NR	NR	NR
2	None	2	320	344	340	310	367	425
3	None	6	150	159	180	150	78	154

Exercise Results – Neutron

US Laboratory Exercise Results

Relative Neutron Results to Given Values

Pulse	Shield	Distance (m)	Valduc	LLNL	Y-12	LANL	PNNL	SRS
1	Lead	2	1	1.15	1.16	0.94	0.92	0.79
		4	1	1.22	1.53	1.42	NR	NR
		6	1	0.99	1.45	NR	NR	NR
2	None	2	1	1.08	1.06	0.97	1.15	1.33
3	None	6	1	1.06	1.2	1	0.52	1.03

According to ANSI/HPS N13.3, *Dosimetry for Criticality Accidents*, nuclear accident dosimetry systems should be able to provide sufficient data to calculate the dose within ± 25%. Results in green meet this performance criterion while results in red do not.

Exercise Results - Gamma

Integrated US Laboratory Exercise Results

Gamma Dose (Rad)

Pulse	Shield	Distance (m)	Valduc	LLNL	Y-12	LANL	PNNL	SRS
	Lead	2	50	221	180	420	276	262
1		4	30	46	80	160	NR	NR
		6	20	28	50	NR	NR	NR
2	None	2	380	432	330	420	467	494
3	None	6	210	172	160	180	187	295

Exercise Results - Gamma

Integrated US Laboratory Exercise Results

Relative Gamma Dose Relative to Given Values

Pulse	Shield	Distance (m)	Valduc	LLNL	Y-12	LANL	PNNL	SRS
1	Lead	2	1	4.42	3.6	8.4	5.52	5.24
		4	1	1.53	2.67	5.33	NR	NR
		6	1	1.4	2.5	NR	NR	NR
2	None	2	1	1.14	0.87	1.11	1.23	1.3
3	None	6	1	0.82	0.76	0.86	0.89	1.4

According to ANSI/HPS N13.3, *Dosimetry for Criticality Accidents*, nuclear accident dosimetry systems should be able to provide sufficient data to calculate the dose within ± 25%. Results in green meet this performance criterion while results in red do not.

Lessons Learned

Insufficient Operational Experience

- Instrumentation and personnel have changed resulting in personnel with no practical experience
- Training of dosimetry personnel on their dosimetry system should be formalized and increased across complex

Detector Technology Has Advanced

- Nuclear accident dosimetry technology is substantially unchanged
- Neutron activation analysis imposes time restraints on short lived isotopes
- Difficulty in accounting for complex power history
- Measurements require expert interpretation
- NAD systems could take advantage of current technology or new technology to eliminate process steps and lessen reliance on experts

Gamma Dose TLD Needs Investigation

- Results from all laboratories (particularly pulse 1 2m) were far too high
- Additional testing is necessary to resolve this anomaly

Lessons Learned

- Throughput of Activated Foils is the Limiting Factor
 - Counting irradiated samples must be done before activation of sample becomes too low and information is gone
 - To achieve good statistics these counts require time
 - Crosstalk of samples due to multiple teams added an additional complication
- A Thorough and Reoccurring Testing Program is Needed
 - Every participating laboratory expressed a strong desire for continued opportunities to test and refine their dosimetry system as well as train operations personnel to demonstrate regulatory compliance and competency
 - ANSI/HPS N13.3 Nuclear Accident Dosimetry is being rewritten with these participating labs taking the lead

2010 CALIBAN NAD Exercise

Participating Laboratories

- All 2009 Participants Returned
 - LLNL
 - LANL
 - PNNL
 - SRS
 - Y-12
- New Participant

 Many other organizations expressed interest but could not be accommodated until exercises are established with Godiva

CALIBAN Reactor

CALIBAN Reactor

- Unreflected HEU metal fast burst reactor (similar to SPR)
- Operated in pulse mode
- Pulse mode initiated by rapid insertion of control rods
- Solid core composition
 - 10 fuel discs & 4 control rods
 - 93.5% HEU metal alloyed with 10 wt% Mo

Preliminary Exercise Results

US Laboratory Exercise Results

Pulse 1 - Neutron Dose

Lawrence Livermore National Laboratory

Preliminary Exercise Results

US Laboratory Exercise Results

Pulse 1 - Photon Dose

Lawrence Livermore National Laboratory

Future NAD Exercises

- 2013 Godiva NAD Experiment at Nevada National Security Site (NNSS)
 - Laboratory participants were limited by equipment and setup available at CEA-Valduc
 - LLNL is coupling the experience of the past two NAD exercises in France with operational experience at NNSS to develop a counting laboratory for upcoming NAD experiments using Godiva.
 - Godiva radiation field in DAF must be characterized to provide reference values
 - Counting Laboratory will feature all the proper safety equipment, workspace, hand tools, and utilities (i.e. power)
 - Counting Laboratory should provide a fume hood to allow processing of irradiated dosimetry elements (e.g. crushing, melting, burning sulfur)
 - Counting Laboratory should include moveable shielding to minimize crosstalk
 - Routine exercises should be provided in the future for training of dosimetry personnel
 - NNSA should consider hosting an OECD International Intercomparison Exercise